Latent mean differences between men and women: The case of the Preference for the Intuition and Deliberation Scale


  • Alejandro César Cosentino Universidad de la Defensa Nacional
  • Susana Celeste Azzollini Facultad del Ejército (FE), Universidad de la Defensa Nacional (UNDEF), Buenos Aires, Argentina, & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina


Decision making, human sex differences, structural equation modeling, effect size


Intuition and deliberation are two modes of thinking for decision making. The objective of this research was to compare latent means between men and women’s preference for intuition and deliberation. However, empirical studies on the Preference for Intuition and Deliberation scale (PID) measurement invariance were not available. The results of our study showed the original PID-based model did not show a good fit to the data. Nevertheless, a revised PID-based model showed strong and strict measurement invariance. As a result, latent mean comparison indicated that women showed more preference for intuition and less for deliberation than men.


Não há dados estatísticos.


Abós, Á., Burgueño, R., García-González, L., & Sevil-Serrano, J. (2021). Influence of internal and external controlling teaching behaviors on students’ motivational outcomes in physical education: Is there a gender difference? Journal of Teaching in Physical Education. Advance online publication.

Archer, J. (2019). The reality and evolutionary significance of human psychological sex differences. Biological Reviews, 94(4), 1381–1415.

Betsch, C. (2004). Präferenz für Intuition und Deliberation (PID). Inventar zur erfassung von affekt- und kognitionsbasiertem entscheiden [Preference for Intuition and Deliberation (PID): An inventory for assessing affect- and cognition-based decision-making]. Zeitschrift für Differentielle und Diagnostische Psychologie, 25(4), 179–197.

Betsch, C. (2008). Chronic preferences for intuition and deliberation in decision making: Lessons learned about intuition from an individual differences approach. In H. Plessner, C. Betsch, & T. Betsch (Eds.), Intuition in judgment and decision making (pp. 231–248). Lawrence Erlbaum Associates Publishers.

Betsch, C., & Iannello, P. (2010). Measuring individual differences in intuitive and deliberate decision making styles: A comparison of different measures. In A. Glöckner & C. Witteman (Eds.), Tracing intuition: Recent methods in measuring intuitive and deliberate processes in decision making (pp. 251–267). Psychology Press.

Betsch, C., & Kunz, J. J. (2008). Individual strategy preferences and decisional fit. Journal of Behavioral Decision Making, 21(5), 532–555.

Browne, M. W. (2001). An overview of analytic roation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111–150.

Caycho-Rodríguez, T., Vilca, L. W., Carbajal-León, C., White, M., Vivanco-Vidal, A., Saroli-Araníbar, D., Peña-Calero, B. N., & Moreta-Herrera, R. (2022). Coronavirus Anxiety Scale: New psychometric evidence for the Spanish version based on CFA and IRT models in a Peruvian sample. Death Studies, 46(5), 1090–1099.

Colombo, B., Rodella, C., Riva, S., & Antonietti, A. (2013). The effects of lies on economic decision making. An eye-tracking study. Research in Psychology and Behavioral Sciences, 1(3), 38–47.

Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd ed.). L. Erlbaum Associates.

Cools, E., & Van den Broeck, H. (2007). Development and validation of the cognitive style indicator. The Journal of Psychology, 141(4), 359–387.

Derntl, B., Pintzinger, N., Kryspin-Exner, I., & Schöpf, V. (2014). The impact of sex hormone concentrations on decision-making in females and males. Frontiers in Neuroscience, 8.

Dijkstra, K. A., van der Pligt, J., & van Kleef, G. A. (2017). Fit between decision mode and processing style predicts subjective value of chosen alternatives. European Journal of Social Psychology, 47(1), 72–81.

Dorrough, A. R., & Glöckner, A. (2019). A cross-national analysis of sex differences in prisoner’s dilemma games. British Journal of Social Psychology, 58(1), 225–240.

Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156–168.

Grevenstein, D., & Bluemke, M. (2022). Measurement invariance of the SOC-13 Sense of Coherence Scale across gender and age groups. European Journal of Psychological Assessment, 38(1), 61–71.

Hancock, G. R. (2001). Effect size, power, and sample size determination for structured means modeling and mimic approaches to between-groups hypothesis testing of means on a single latent construct. Psychometrika, 66(3), 373–388.

Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

Iannello, P. (2008). Intuitive and analytical thinking in decision making: The role of mindreading and cognitive style in a strategic interactive context [Unpublished doctoral thesis]. Università Cattolica del Sacro Cuore, Milan, Italy.

Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). MVN: An R package for assessing multivariate normality. The R Journal, 6(2), 151–162.

Laborde, S., Dosseville, F., & Scelles, N. (2010). Trait emotional intelligence and preference for intuition and deliberation: Respective influence on academic performance. Personality and Individual Differences, 49(7), 784–788.

Lenhard, W., & Lenhard, A. (2016). Calculation of effect sizes. Psychometrica

Lorenzo-Seva, U., & Ferrando, P. J. (2013). FACTOR 9.2: A comprehensive program for fitting exploratory and semiconfirmatory factor analysis and IRT models. Applied Psychological Measurement, 37(6), 497–498.

Mikušková, E. B., Hanák, R., & Čavojová, V. (2015). Appropriateness of two inventories measuring intuition (the PID and the REI) for Slovak population. Studia Psychologica, 57(1), 63–82.

Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39(3), 479–515.

Miroshnik, K. G., Shcherbakova, O. V., & Kaufman, J. C. (2022). Kaufman Domains of Creativity Scale: Relationship to occupation and measurement invariance across gender. Creativity Research Journal, 34(2), 159–177.

Monacis, L., Palo, V., de, Nuovo, S. D., & Sinatra, M. (2016). Validation of the rational and experiential multimodal inventory in the Italian context. Psychological Reports, 119(1), 242–262.

Pachi, A., Sikaras, C., Ilias, I., Panagiotou, A., Zyga, S., Tsironi, M., Baras, S., Tsitrouli, L. A., & Tselebis, A. (2022). Burnout, depression and sense of coherence in nurses during the pandemic crisis. Healthcare, 10(1), 134.

Pacini, R., & Epstein, S. (1999). The relation of rational and experiential information processing styles to personality, basic beliefs, and the ratio-bias phenomenon. Journal of Personality and Social Psychology, 76(6), 972–987.

Phillips, W. J., Fletcher, J. M., Marks, A. D. G., & Hine, D. W. (2016). Thinking styles and decision making: A meta-analysis. Psychological Bulletin, 142(3), 260–290.

R Core Team. (2016). R: A language and environment for statistical computing (3.2.4) [Computer software]. R Foundation for Statistical Computing.

Revelle, W. (2016). psych: Procedures for personality and psychological research (1.6.9) [Computer software]. Northwestern University.

Richetin, J., Perugini, M., Adjali, I., & Hurling, R. (2007). The moderator role of intuitive versus deliberative decision making for the predictive validity of implicit and explicit measures. European Journal of Personality, 21(4), 529–546.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.

Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45(1), 73–103.

Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In R. D. H. Heijmans, D. S. G. Pollock, & A. Satorra (Eds.), Innovations in multivariate statistical analysis: A festschrift for Heinz Neudecker (pp. 233–247). Springer Science + Business Media.

Schmitt, D. P. (2015). The evolution of culturally-variable sex differences: Men and women are not always different, but when they are…it appears not to result from patriarchy or sex role socialization. In T. K. Shackelford & R. D. Hansen (Eds.), The Evolution of Sexuality (pp. 221–256). Springer International Publishing.

Schmitt, T. A., & Sass, D. A. (2011). Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, 71(1), 95–113.

Schunk, D., & Betsch, C. (2006). Explaining heterogeneity in utility functions by individual differences in decision modes. Journal of Economic Psychology, 27(3), 386–401.

Schweizer, K. (2010). Some guidelines concerning the modeling of traits and abilities in test construction. European Journal of Psychological Assessment, 26(1), 1–2.

Scott, S. G., & Bruce, R. A. (1995). Decision-taking style: The development and assessment of a new measure. Educational and Psychological Measurement, 55(5), 818–831.

semTools Contributors. (2016). SemTools: Useful tools for structural equation modeling. R package (0.4-11) [Computer software].

Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences, 42(5), 893–898.

Stevenson, S. S., & Hicks, R. E. (2016). Trust your instincts: The relationship between intuitive decision making and happiness. European Scientific Journal, 12(11), 463–483.

Sutterer, M. J., Koscik, T. R., & Tranel, D. (2015). Sex-related functional asymmetry of the ventromedial prefrontal cortex in regard to decision-making under risk and ambiguity. Neuropsychologia, 75, 265–273.

Tateneni, K., Mels, G., Cudeck, R., & Browne, M. W. (2009). CEFA: Comprehensive Exploratory Factor Analysis (3.04) [Computer software].

Thompson, M. S., & Green, S. B. (2013). Evaluating between-group differences in latent variable means. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 163–218). Information Age Publishing.

Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209–220.

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 4–70.

Wang, Y., Highhouse, S., Lake, C. J., Petersen, N. L., & Rada, T. B. (2015). Meta-analytic investigations of the relation between intuition and analysis. Journal of Behavioral Decision Making, 30(1), 15–25.

Witteman, C., van den Bercken, J., Claes, L., & Godoy, A. (2009). Assessing rational and intuitive thinking styles. European Journal of Psychological Assessment, 25(1), 39–47.

Yang-Wallentin, F., Jöreskog, K. G., & Luo, H. (2010). Confirmatory factor analysis of ordinal variables with misspecified models. Structural Equation Modeling, 17(3), 392–423.

Youssef-Morgan, C. M., van Zyl, L. E., & Ahrens, B. L. (2022). The Work Gratitude Scale: Development and evaluation of a multidimensional measure. Frontiers in Psychology, 12.



Como Citar

Cosentino, A. C., & Azzollini, S. C. (2022). Latent mean differences between men and women: The case of the Preference for the Intuition and Deliberation Scale. PSICOLOGIA. Obtido de